defintion_of_subsets-j
Differences
This shows you the differences between two versions of the page.
| Next revision | Previous revision | ||
| defintion_of_subsets-j [2024/07/12 11:12] – created - external edit 127.0.0.1 | defintion_of_subsets-j [2024/09/07 11:59] (current) – external edit 127.0.0.1 | ||
|---|---|---|---|
| Line 3: | Line 3: | ||
| 魔方陣全体の集合を小集合に分けるために、いくつかの用語を定義します。 | 魔方陣全体の集合を小集合に分けるために、いくつかの用語を定義します。 | ||
| - | ==== 魔方列とその2進数表現 ==== | + | ==== 魔方組とその2進数表現 ==== |
| - | * **// | + | * **// |
| - | * Examples: | + | * 例: |
| - | * { 2, 9, 4 } is a magic series of order 3. | + | * { 2, 9, 4 } は 3次の魔方組です。 |
| - | * { 10, 7, 14, 3 } is a magic series of order 4. | + | * { 10, 7, 14, 3 } は 4次の魔方組です。 |
| - | * Any set of distinct positive integers | + | * 異なる正整数の集合{ a< |
| - | * Examples: | + | * 例: |
| - | * { 2, 9, 4 } is represented as 1 0000 1001< | + | * { 2, 9, 4 } は 1 0000 1001< |
| - | * { 10, 7, 14, 3 } is represented as 0010 0010 0100 0100< | + | * { 10, 7, 14, 3 } は 0010 0010 0100 0100< |
| - | ==== Order on distinct integer sets ==== | + | ==== 正整数集合の順序(大小関係) |
| - | * We can define order on sets of distinct integers in accord with the order of their binary representation. | + | * 異なる正整数の集合の大小関係は、2進数表現の大小で定義することができます。 |
| - | * Example: | + | * 例: |
| - | * A magic set { 5, 16, 2, 11 } is greater than { 12, 1, 15, 6 } because their binary representations are 1000 0100 0001 0010 ( = 0x8412 ) and 0100 1000 0010 0001 ( = 0x4821 ), respectively, | + | * 魔方組 |
| - | ==== Complement of a magic series | + | ==== 魔方組の補数組 |
| - | If you replace each element | + | // |
| + | 魔方組の各要素をすべて補数変換してできる集合は必ず魔方組になります。 | ||
| + | このようにしてできる魔方組を元の魔方組の | ||
| - | * Examples in the case of order 4: | + | * 4次における例: |
| - | * { 12, 1, 15, 6 } is the complement of { 5, 16, 2, 11 }. | + | * { 12, 1, 15, 6 } は { 5, 16, 2, 11 } の補数組です。 |
| - | * { 7, 10, 3, 14 } is the complement of itself. | + | * { 7, 10, 3, 14 } は自分自身の補数組です。 |
| - | In binary representations, | + | 2進数表現においては、補数組は 2進数の桁を逆順にすること(bit reversal)で得られます。 |
| - | * Example in the case of order 4: | + | * 4次の例: |
| - | * The complement of 1000 0100 0001 0010 is 0100 1000 0010 0001. | + | * 1000 0100 0001 0010 の補数組は |
| - | ==== The representative magic series of a magic square | + | ==== 魔方陣の代表魔方組 |
| - | Every row and column of a magic square is always a magic series. We define the ** representative magic series | + | 魔方陣のすべての行と列は魔方組です。ここで** 代表魔方組 |
| - | Example: | + | 例: |
| - | The representative magic series of a magic square | + | 魔方陣 |
| 16 12 1 5 | 16 12 1 5 | ||
| Line 42: | Line 44: | ||
| | | ||
| - | is { 16, 13, 3, 2 } = 0x9006, which forms the complement of the third column. | + | の代表魔方組は |
| - | **We classify magic squares by their representative magic series. This classification is invariant under rotations, reflections, | + | **魔方陣をその代表魔方組によって小集合に分類します。この分類は魔方陣の回転、反転、[[https:// |
| ** | ** | ||
defintion_of_subsets-j.1720750340.txt.gz · Last modified: 2024/07/12 11:12 by 127.0.0.1
